This transfer is possible in two ways: direct transfer and using the decimal system.
First we will perform the translation through the decimal system
let\'s translate to decimal like this:
14∙162+1∙161+2∙160+7∙16-1 = 14∙256+1∙16+2∙1+7∙0.0625 = 3584+16+2+0.4375 = 3602.437510
got It: E12.716 =3602.437510
Translate the number 3602.437510 в octal like this:
the Integer part of the number is divided by the base of the new number system:
3602 | 8 | | | |
-3600 | 450 | 8 | | |
2 | -448 | 56 | 8 | |
| 2 | -56 | 7 | |
| | 0 | | |
 |
the Fractional part of the number is multiplied by the base of the new number system:
 |
0. | 4375*8 |
3 | .5*8 |
4 | .0*8 |
the result of the conversion was:
3602.437510 = 7022.348
answer: E12.716 = 7022.348
Now we will perform a direct translation.
let\'s do a direct translation from hexadecimal to binary like this:
E12.716 = E 1 2. 7 = E(=1110) 1(=0001) 2(=0010). 7(=0111) = 111000010010.01112
answer: E12.716 = 111000010010.01112
Fill in the number with missing zeros on the right
let\'s make a direct translation from binary to post-binary like this:
111000010010.0111002 = 111 000 010 010. 011 100 = 111(=7) 000(=0) 010(=2) 010(=2). 011(=3) 100(=4) = 7022.348
answer: E12.716 = 7022.348