This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
1234516 = 1 2 3 4 5 = 1(=0001) 2(=0010) 3(=0011) 4(=0100) 5(=0101) = 100100011010001012
answer: 1234516 = 100100011010001012
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
1∙164+2∙163+3∙162+4∙161+5∙160 = 1∙65536+2∙4096+3∙256+4∙16+5∙1 = 65536+8192+768+64+5 = 7456510
got It: 1234516 =7456510
Translate the number 7456510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
74565 | 2 | | | | | | | | | | | | | | | | |
-74564 | 37282 | 2 | | | | | | | | | | | | | | | |
1 | -37282 | 18641 | 2 | | | | | | | | | | | | | | |
| 0 | -18640 | 9320 | 2 | | | | | | | | | | | | | |
| | 1 | -9320 | 4660 | 2 | | | | | | | | | | | | |
| | | 0 | -4660 | 2330 | 2 | | | | | | | | | | | |
| | | | 0 | -2330 | 1165 | 2 | | | | | | | | | | |
| | | | | 0 | -1164 | 582 | 2 | | | | | | | | | |
| | | | | | 1 | -582 | 291 | 2 | | | | | | | | |
| | | | | | | 0 | -290 | 145 | 2 | | | | | | | |
| | | | | | | | 1 | -144 | 72 | 2 | | | | | | |
| | | | | | | | | 1 | -72 | 36 | 2 | | | | | |
| | | | | | | | | | 0 | -36 | 18 | 2 | | | | |
| | | | | | | | | | | 0 | -18 | 9 | 2 | | | |
| | | | | | | | | | | | 0 | -8 | 4 | 2 | | |
| | | | | | | | | | | | | 1 | -4 | 2 | 2 | |
| | | | | | | | | | | | | | 0 | -2 | 1 | |
| | | | | | | | | | | | | | | 0 | | |
 |
the result of the conversion was:
7456510 = 100100011010001012
answer: 1234516 = 100100011010001012