This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
CB7.7616 = C B 7. 7 6 = C(=1100) B(=1011) 7(=0111). 7(=0111) 6(=0110) = 110010110111.01110112
answer: CB7.7616 = 110010110111.01110112
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
12∙162+11∙161+7∙160+7∙16-1+6∙16-2 = 12∙256+11∙16+7∙1+7∙0.0625+6∙0.00390625 = 3072+176+7+0.4375+0.0234375 = 3255.460937510
got It: CB7.7616 =3255.460937510
Translate the number 3255.460937510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
3255 | 2 | | | | | | | | | | | |
-3254 | 1627 | 2 | | | | | | | | | | |
1 | -1626 | 813 | 2 | | | | | | | | | |
| 1 | -812 | 406 | 2 | | | | | | | | |
| | 1 | -406 | 203 | 2 | | | | | | | |
| | | 0 | -202 | 101 | 2 | | | | | | |
| | | | 1 | -100 | 50 | 2 | | | | | |
| | | | | 1 | -50 | 25 | 2 | | | | |
| | | | | | 0 | -24 | 12 | 2 | | | |
| | | | | | | 1 | -12 | 6 | 2 | | |
| | | | | | | | 0 | -6 | 3 | 2 | |
| | | | | | | | | 0 | -2 | 1 | |
| | | | | | | | | | 1 | | |
 |
the Fractional part of the number is multiplied by the base of the new number system:
 |
0. | 4609375*2 |
0 | .92188*2 |
1 | .84375*2 |
1 | .6875*2 |
1 | .375*2 |
0 | .75*2 |
1 | .5*2 |
1 | .0*2 |
the result of the conversion was:
3255.460937510 = 110010110111.01110112
answer: CB7.7616 = 110010110111.01110112