This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
5CA.D6116 = 5 C A. D 6 1 = 5(=0101) C(=1100) A(=1010). D(=1101) 6(=0110) 1(=0001) = 10111001010.1101011000012
answer: 5CA.D6116 = 10111001010.1101011000012
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
5∙162+12∙161+10∙160+13∙16-1+6∙16-2+1∙16-3 = 5∙256+12∙16+10∙1+13∙0.0625+6∙0.00390625+1∙0.000244140625 = 1280+192+10+0.8125+0.0234375+0.000244140625 = 1482.83618164062510
got It: 5CA.D6116 =1482.83618164062510
Translate the number 1482.83618164062510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
1482 | 2 | | | | | | | | | | |
-1482 | 741 | 2 | | | | | | | | | |
0 | -740 | 370 | 2 | | | | | | | | |
| 1 | -370 | 185 | 2 | | | | | | | |
| | 0 | -184 | 92 | 2 | | | | | | |
| | | 1 | -92 | 46 | 2 | | | | | |
| | | | 0 | -46 | 23 | 2 | | | | |
| | | | | 0 | -22 | 11 | 2 | | | |
| | | | | | 1 | -10 | 5 | 2 | | |
| | | | | | | 1 | -4 | 2 | 2 | |
| | | | | | | | 1 | -2 | 1 | |
| | | | | | | | | 0 | | |
 |
the Fractional part of the number is multiplied by the base of the new number system:
 |
0. | 836181640625*2 |
1 | .67236*2 |
1 | .34473*2 |
0 | .68945*2 |
1 | .37891*2 |
0 | .75781*2 |
1 | .51563*2 |
1 | .03125*2 |
0 | .0625*2 |
0 | .125*2 |
0 | .25*2 |
the result of the conversion was:
1482.83618164062510 = 10111001010.11010110002
answer: 5CA.D6116 = 10111001010.11010110002