This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
9B316 = 9 B 3 = 9(=1001) B(=1011) 3(=0011) = 1001101100112
answer: 9B316 = 1001101100112
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
9∙162+11∙161+3∙160 = 9∙256+11∙16+3∙1 = 2304+176+3 = 248310
got It: 9B316 =248310
Translate the number 248310 в binary like this:
the Integer part of the number is divided by the base of the new number system:
2483 | 2 | | | | | | | | | | | |
-2482 | 1241 | 2 | | | | | | | | | | |
1 | -1240 | 620 | 2 | | | | | | | | | |
| 1 | -620 | 310 | 2 | | | | | | | | |
| | 0 | -310 | 155 | 2 | | | | | | | |
| | | 0 | -154 | 77 | 2 | | | | | | |
| | | | 1 | -76 | 38 | 2 | | | | | |
| | | | | 1 | -38 | 19 | 2 | | | | |
| | | | | | 0 | -18 | 9 | 2 | | | |
| | | | | | | 1 | -8 | 4 | 2 | | |
| | | | | | | | 1 | -4 | 2 | 2 | |
| | | | | | | | | 0 | -2 | 1 | |
| | | | | | | | | | 0 | | |
 |
the result of the conversion was:
248310 = 1001101100112
answer: 9B316 = 1001101100112