This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
214.A66616 = 2 1 4. A 6 6 6 = 2(=0010) 1(=0001) 4(=0100). A(=1010) 6(=0110) 6(=0110) 6(=0110) = 1000010100.1010011001100112
answer: 214.A66616 = 1000010100.1010011001100112
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
2∙162+1∙161+4∙160+10∙16-1+6∙16-2+6∙16-3+6∙16-4 = 2∙256+1∙16+4∙1+10∙0.0625+6∙0.00390625+6∙0.000244140625+6∙1.52587890625E-5 = 512+16+4+0.625+0.0234375+0.00146484375+9.1552734375E-5 = 532.6499938964843810
got It: 214.A66616 =532.6499938964843810
Translate the number 532.6499938964843810 в binary like this:
the Integer part of the number is divided by the base of the new number system:
532 | 2 | | | | | | | | | |
-532 | 266 | 2 | | | | | | | | |
0 | -266 | 133 | 2 | | | | | | | |
| 0 | -132 | 66 | 2 | | | | | | |
| | 1 | -66 | 33 | 2 | | | | | |
| | | 0 | -32 | 16 | 2 | | | | |
| | | | 1 | -16 | 8 | 2 | | | |
| | | | | 0 | -8 | 4 | 2 | | |
| | | | | | 0 | -4 | 2 | 2 | |
| | | | | | | 0 | -2 | 1 | |
| | | | | | | | 0 | | |
 |
the Fractional part of the number is multiplied by the base of the new number system:
 |
0. | 64999389648438*2 |
1 | .29999*2 |
0 | .59998*2 |
1 | .19995*2 |
0 | .3999*2 |
0 | .7998*2 |
1 | .59961*2 |
1 | .19922*2 |
0 | .39844*2 |
0 | .79688*2 |
1 | .59375*2 |
the result of the conversion was:
532.6499938964843810 = 1000010100.10100110012
answer: 214.A66616 = 1000010100.10100110012