This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
3ab2.3c16 = 3 a b 2. 3 c = 3(=0011) a(=1010) b(=1011) 2(=0010). 3(=0011) c(=1100) = 11101010110010.0011112
answer: 3ab2.3c16 = 11101010110010.0011112
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
3∙163+10∙162+11∙161+2∙160+3∙16-1+12∙16-2 = 3∙4096+10∙256+11∙16+2∙1+3∙0.0625+12∙0.00390625 = 12288+2560+176+2+0.1875+0.046875 = 15026.23437510
got It: 3ab2.3c16 =15026.23437510
Translate the number 15026.23437510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
15026 | 2 | | | | | | | | | | | | | |
-15026 | 7513 | 2 | | | | | | | | | | | | |
0 | -7512 | 3756 | 2 | | | | | | | | | | | |
| 1 | -3756 | 1878 | 2 | | | | | | | | | | |
| | 0 | -1878 | 939 | 2 | | | | | | | | | |
| | | 0 | -938 | 469 | 2 | | | | | | | | |
| | | | 1 | -468 | 234 | 2 | | | | | | | |
| | | | | 1 | -234 | 117 | 2 | | | | | | |
| | | | | | 0 | -116 | 58 | 2 | | | | | |
| | | | | | | 1 | -58 | 29 | 2 | | | | |
| | | | | | | | 0 | -28 | 14 | 2 | | | |
| | | | | | | | | 1 | -14 | 7 | 2 | | |
| | | | | | | | | | 0 | -6 | 3 | 2 | |
| | | | | | | | | | | 1 | -2 | 1 | |
| | | | | | | | | | | | 1 | | |
 |
the Fractional part of the number is multiplied by the base of the new number system:
 |
0. | 234375*2 |
0 | .46875*2 |
0 | .9375*2 |
1 | .875*2 |
1 | .75*2 |
1 | .5*2 |
1 | .0*2 |
the result of the conversion was:
15026.23437510 = 11101010110010.0011112
answer: 3ab2.3c16 = 11101010110010.0011112