This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
Fill in the number with missing zeros on the right
let\'s make a direct translation from binary to post-binary like this:
101111100011.0011002 = 101 111 100 011. 001 100 = 101(=5) 111(=7) 100(=4) 011(=3). 001(=1) 100(=4) = 5743.148
answer: 101111100011.00112 = 5743.148
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
1∙211+0∙210+1∙29+1∙28+1∙27+1∙26+1∙25+0∙24+0∙23+0∙22+1∙21+1∙20+0∙2-1+0∙2-2+1∙2-3+1∙2-4+0∙2-5+0∙2-6 = 1∙2048+0∙1024+1∙512+1∙256+1∙128+1∙64+1∙32+0∙16+0∙8+0∙4+1∙2+1∙1+0∙0.5+0∙0.25+1∙0.125+1∙0.0625+0∙0.03125+0∙0.015625 = 2048+0+512+256+128+64+32+0+0+0+2+1+0+0+0.125+0.0625+0+0 = 3043.187510
got It: 101111100011.0011002 =3043.187510
Translate the number 3043.187510 в octal like this:
the Integer part of the number is divided by the base of the new number system:
3043 | 8 | | | |
-3040 | 380 | 8 | | |
3 | -376 | 47 | 8 | |
| 4 | -40 | 5 | |
| | 7 | | |
|
the Fractional part of the number is multiplied by the base of the new number system:
|
0. | 1875*8 |
1 | .5*8 |
4 | .0*8 |
the result of the conversion was:
3043.187510 = 5743.148
answer: 101111100011.00112 = 5743.148