This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
AEF2.B616 = A E F 2. B 6 = A(=1010) E(=1110) F(=1111) 2(=0010). B(=1011) 6(=0110) = 1010111011110010.10110112
answer: AEF2.B616 = 1010111011110010.10110112
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
10∙163+14∙162+15∙161+2∙160+11∙16-1+6∙16-2 = 10∙4096+14∙256+15∙16+2∙1+11∙0.0625+6∙0.00390625 = 40960+3584+240+2+0.6875+0.0234375 = 44786.710937510
got It: AEF2.B616 =44786.710937510
Translate the number 44786.710937510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
44786 | 2 | | | | | | | | | | | | | | | |
-44786 | 22393 | 2 | | | | | | | | | | | | | | |
0 | -22392 | 11196 | 2 | | | | | | | | | | | | | |
| 1 | -11196 | 5598 | 2 | | | | | | | | | | | | |
| | 0 | -5598 | 2799 | 2 | | | | | | | | | | | |
| | | 0 | -2798 | 1399 | 2 | | | | | | | | | | |
| | | | 1 | -1398 | 699 | 2 | | | | | | | | | |
| | | | | 1 | -698 | 349 | 2 | | | | | | | | |
| | | | | | 1 | -348 | 174 | 2 | | | | | | | |
| | | | | | | 1 | -174 | 87 | 2 | | | | | | |
| | | | | | | | 0 | -86 | 43 | 2 | | | | | |
| | | | | | | | | 1 | -42 | 21 | 2 | | | | |
| | | | | | | | | | 1 | -20 | 10 | 2 | | | |
| | | | | | | | | | | 1 | -10 | 5 | 2 | | |
| | | | | | | | | | | | 0 | -4 | 2 | 2 | |
| | | | | | | | | | | | | 1 | -2 | 1 | |
| | | | | | | | | | | | | | 0 | | |
|
the Fractional part of the number is multiplied by the base of the new number system:
|
0. | 7109375*2 |
1 | .42188*2 |
0 | .84375*2 |
1 | .6875*2 |
1 | .375*2 |
0 | .75*2 |
1 | .5*2 |
1 | .0*2 |
the result of the conversion was:
44786.710937510 = 1010111011110010.10110112
answer: AEF2.B616 = 1010111011110010.10110112