This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
97d16 = 9 7 d = 9(=1001) 7(=0111) d(=1101) = 1001011111012
answer: 97d16 = 1001011111012
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
9∙162+7∙161+13∙160 = 9∙256+7∙16+13∙1 = 2304+112+13 = 242910
got It: 97d16 =242910
Translate the number 242910 в binary like this:
the Integer part of the number is divided by the base of the new number system:
2429 | 2 | | | | | | | | | | | |
-2428 | 1214 | 2 | | | | | | | | | | |
1 | -1214 | 607 | 2 | | | | | | | | | |
| 0 | -606 | 303 | 2 | | | | | | | | |
| | 1 | -302 | 151 | 2 | | | | | | | |
| | | 1 | -150 | 75 | 2 | | | | | | |
| | | | 1 | -74 | 37 | 2 | | | | | |
| | | | | 1 | -36 | 18 | 2 | | | | |
| | | | | | 1 | -18 | 9 | 2 | | | |
| | | | | | | 0 | -8 | 4 | 2 | | |
| | | | | | | | 1 | -4 | 2 | 2 | |
| | | | | | | | | 0 | -2 | 1 | |
| | | | | | | | | | 0 | | |
|
the result of the conversion was:
242910 = 1001011111012
answer: 97d16 = 1001011111012