This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
90AB.1C16 = 9 0 A B. 1 C = 9(=1001) 0(=0000) A(=1010) B(=1011). 1(=0001) C(=1100) = 1001000010101011.0001112
answer: 90AB.1C16 = 1001000010101011.0001112
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
9∙163+0∙162+10∙161+11∙160+1∙16-1+12∙16-2 = 9∙4096+0∙256+10∙16+11∙1+1∙0.0625+12∙0.00390625 = 36864+0+160+11+0.0625+0.046875 = 37035.10937510
got It: 90AB.1C16 =37035.10937510
Translate the number 37035.10937510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
37035 | 2 | | | | | | | | | | | | | | | |
-37034 | 18517 | 2 | | | | | | | | | | | | | | |
1 | -18516 | 9258 | 2 | | | | | | | | | | | | | |
| 1 | -9258 | 4629 | 2 | | | | | | | | | | | | |
| | 0 | -4628 | 2314 | 2 | | | | | | | | | | | |
| | | 1 | -2314 | 1157 | 2 | | | | | | | | | | |
| | | | 0 | -1156 | 578 | 2 | | | | | | | | | |
| | | | | 1 | -578 | 289 | 2 | | | | | | | | |
| | | | | | 0 | -288 | 144 | 2 | | | | | | | |
| | | | | | | 1 | -144 | 72 | 2 | | | | | | |
| | | | | | | | 0 | -72 | 36 | 2 | | | | | |
| | | | | | | | | 0 | -36 | 18 | 2 | | | | |
| | | | | | | | | | 0 | -18 | 9 | 2 | | | |
| | | | | | | | | | | 0 | -8 | 4 | 2 | | |
| | | | | | | | | | | | 1 | -4 | 2 | 2 | |
| | | | | | | | | | | | | 0 | -2 | 1 | |
| | | | | | | | | | | | | | 0 | | |
|
the Fractional part of the number is multiplied by the base of the new number system:
|
0. | 109375*2 |
0 | .21875*2 |
0 | .4375*2 |
0 | .875*2 |
1 | .75*2 |
1 | .5*2 |
1 | .0*2 |
the result of the conversion was:
37035.10937510 = 1001000010101011.0001112
answer: 90AB.1C16 = 1001000010101011.0001112