This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
80.CD16 = 8 0. C D = 8(=1000) 0(=0000). C(=1100) D(=1101) = 10000000.110011012
answer: 80.CD16 = 10000000.110011012
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
8∙161+0∙160+12∙16-1+13∙16-2 = 8∙16+0∙1+12∙0.0625+13∙0.00390625 = 128+0+0.75+0.05078125 = 128.8007812510
got It: 80.CD16 =128.8007812510
Translate the number 128.8007812510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
128 | 2 | | | | | | | |
-128 | 64 | 2 | | | | | | |
0 | -64 | 32 | 2 | | | | | |
| 0 | -32 | 16 | 2 | | | | |
| | 0 | -16 | 8 | 2 | | | |
| | | 0 | -8 | 4 | 2 | | |
| | | | 0 | -4 | 2 | 2 | |
| | | | | 0 | -2 | 1 | |
| | | | | | 0 | | |
|
the Fractional part of the number is multiplied by the base of the new number system:
|
0. | 80078125*2 |
1 | .60156*2 |
1 | .20313*2 |
0 | .40625*2 |
0 | .8125*2 |
1 | .625*2 |
1 | .25*2 |
0 | .5*2 |
1 | .0*2 |
the result of the conversion was:
128.8007812510 = 10000000.110011012
answer: 80.CD16 = 10000000.110011012