This transfer is possible in two ways: direct transfer and using the decimal system.
First we will perform the translation through the decimal system
let\'s translate to decimal like this:
0∙166+10∙165+8∙164+1∙163+2∙162+11∙161+12∙160 = 0∙16777216+10∙1048576+8∙65536+1∙4096+2∙256+11∙16+12∙1 = 0+10485760+524288+4096+512+176+12 = 1101484410
got It: 0a812bc16 =1101484410
Translate the number 1101484410 в octal like this:
the Integer part of the number is divided by the base of the new number system:
11014844 | 8 | | | | | | | |
-11014840 | 1376855 | 8 | | | | | | |
4 | -1376848 | 172106 | 8 | | | | | |
| 7 | -172104 | 21513 | 8 | | | | |
| | 2 | -21512 | 2689 | 8 | | | |
| | | 1 | -2688 | 336 | 8 | | |
| | | | 1 | -336 | 42 | 8 | |
| | | | | 0 | -40 | 5 | |
| | | | | | 2 | | |
|
the result of the conversion was:
1101484410 = 520112748
answer: 0a812bc16 = 520112748
Now we will perform a direct translation.
let\'s do a direct translation from hexadecimal to binary like this:
0a812bc16 = 0 a 8 1 2 b c = 0(=0000) a(=1010) 8(=1000) 1(=0001) 2(=0010) b(=1011) c(=1100) = 1010100000010010101111002
answer: 0a812bc16 = 1010100000010010101111002
let\'s make a direct translation from binary to post-binary like this:
1010100000010010101111002 = 101 010 000 001 001 010 111 100 = 101(=5) 010(=2) 000(=0) 001(=1) 001(=1) 010(=2) 111(=7) 100(=4) = 520112748
answer: 0a812bc16 = 520112748