This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
Fffff16 = F f f f f = F(=1111) f(=1111) f(=1111) f(=1111) f(=1111) = 111111111111111111112
answer: Fffff16 = 111111111111111111112
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
15∙164+15∙163+15∙162+15∙161+15∙160 = 15∙65536+15∙4096+15∙256+15∙16+15∙1 = 983040+61440+3840+240+15 = 104857510
got It: Fffff16 =104857510
Translate the number 104857510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
1048575 | 2 | | | | | | | | | | | | | | | | | | | |
-1048574 | 524287 | 2 | | | | | | | | | | | | | | | | | | |
1 | -524286 | 262143 | 2 | | | | | | | | | | | | | | | | | |
| 1 | -262142 | 131071 | 2 | | | | | | | | | | | | | | | | |
| | 1 | -131070 | 65535 | 2 | | | | | | | | | | | | | | | |
| | | 1 | -65534 | 32767 | 2 | | | | | | | | | | | | | | |
| | | | 1 | -32766 | 16383 | 2 | | | | | | | | | | | | | |
| | | | | 1 | -16382 | 8191 | 2 | | | | | | | | | | | | |
| | | | | | 1 | -8190 | 4095 | 2 | | | | | | | | | | | |
| | | | | | | 1 | -4094 | 2047 | 2 | | | | | | | | | | |
| | | | | | | | 1 | -2046 | 1023 | 2 | | | | | | | | | |
| | | | | | | | | 1 | -1022 | 511 | 2 | | | | | | | | |
| | | | | | | | | | 1 | -510 | 255 | 2 | | | | | | | |
| | | | | | | | | | | 1 | -254 | 127 | 2 | | | | | | |
| | | | | | | | | | | | 1 | -126 | 63 | 2 | | | | | |
| | | | | | | | | | | | | 1 | -62 | 31 | 2 | | | | |
| | | | | | | | | | | | | | 1 | -30 | 15 | 2 | | | |
| | | | | | | | | | | | | | | 1 | -14 | 7 | 2 | | |
| | | | | | | | | | | | | | | | 1 | -6 | 3 | 2 | |
| | | | | | | | | | | | | | | | | 1 | -2 | 1 | |
| | | | | | | | | | | | | | | | | | 1 | | |
 |
the result of the conversion was:
104857510 = 111111111111111111112
answer: Fffff16 = 111111111111111111112