This transfer is possible in two ways: direct transfer and using the decimal system.
first, let\'s make a direct transfer.
let\'s do a direct translation from hexadecimal to binary like this:
8A.D16 = 8 A. D = 8(=1000) A(=1010). D(=1101) = 10001010.11012
the Final answer: 8A.D16 = 10001010.11012
now let\'s make the transfer using the decimal system.
let\'s translate to decimal like this:
8∙161+10∙160+13∙16-1 = 8∙16+10∙1+13∙0.0625 = 128+10+0.8125 = 138.812510
got It: 8A.D16 =138.812510
Translate the number 138.812510 в binary like this:
the Integer part of the number is divided by the base of the new number system:
138 | 2 | | | | | | | |
-138 | 69 | 2 | | | | | | |
0 | -68 | 34 | 2 | | | | | |
| 1 | -34 | 17 | 2 | | | | |
| | 0 | -16 | 8 | 2 | | | |
| | | 1 | -8 | 4 | 2 | | |
| | | | 0 | -4 | 2 | 2 | |
| | | | | 0 | -2 | 1 | |
| | | | | | 0 | | |
 |
the Fractional part of the number is multiplied by the base of the new number system:
 |
0. | 8125*2 |
1 | .625*2 |
1 | .25*2 |
0 | .5*2 |
1 | .0*2 |
the result of the conversion was:
138.812510 = 10001010.11012
the Final answer: 8A.D16 = 10001010.11012